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On Descent from Local Minima 

By A. A. Goldstein and J. F. Price 

Abstract. When a local minimum of a function of several variables has been found by 
use of an algorithm for finding such minima numerically, one often runs the same algorithm 
many times with different starting values in the hopes of finding a lower minimum. Here, 
under the assumption that a local minimum is known, a process with analytical criteria 
is described which sometimes finds smaller local minima in an algorithmic manner. 

Methods of descent are useful for minimizing functions of several variables. 
Generally, one can always obtain points (if such exist) for which the gradient vanishes, 
and moreover, points which are local minima. At saddle points. one can continue 
descent with second derivative information. A point which is a local minimum for a 
function may or may not be a global minimum. At this juncture one resorts to search 
techniques to attempt to further decrease the function. The process to be described 
sometimes finds smaller local minima in an algorithmic manner with analytical 
criteria. One has no general test, of course, for a global minimum. 

Consider first the problem of finding the global minimum for a 2nth degree 
polynomial P1(x) in one variable. The coefficient of x24 will be positive. Let xl be a 
local minimizer of P1. Then one may write 

P1(X) = PA(X1) 

+P (Xl) (X-X1)2 + I"I (X-X,)3 + I (XI) (x 
+ 

- 
2! 3! 

.. 
_(2n)!XJ2, 

If it is further assumed that PI'(x,) $ 0, we may define the polynomial 

F'(X1, X) = 2(PI(x) - P,(x1)) 

P 1X +PX (xl)(x _ X1) +2P (x)(x - 

3P7(xl) (2n)! P'(xl) 

Since P'(x1) > 0 and since 

P1'(x1) 
PA(x) = PA(x,) + ( I 

- 
X 

)2PA(X1, X), 2 

if xl is not a global minimum, then for some point t $ xl, P2(x1, t) < 0, so that 
PQ() < PI(x1). We seek such a point by trying to find a local minimum of P2(x,, x). 
Suppose that at x = x2, P2(x1, x) has a local minimum. If P2(x1, x2) < 0, x2 may be 
used as a new starting value to find a lower minimum of P,(x). On the other hand, if 
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P2(X1, x2) > 0, the process is extended. Assuming that P,'(xi, x2) $ 0, we define 

2(P2(X1, x) - PA(x1, X2)) 

P3(41, x2, x) P2 (X1, X2)(X - X2 

P2 "(X1, X2)(X - x2) +2P2 (x, x2)(x -x2 

3P (x x +2) (2n -2)! P2' (x, x2) 

and seek a negative value for this function. Assume that at x = x3, P3(xj, x2, x) has a 
minimum. If P3(x1, x2, x3) < 0, we have a new starting value for finding a lower 
minimum for P2(xl, x). If P3(X1, X2, x3) ? 0 (and assuming again that P.'(xi, x2, x3) 

$ 0), we define P4(x1, x2, x3, x) in an analogous manner and continue the process. 
Since 

(degree of Pk) = (degree of Pk,) - 2, 

only a finite number of polynomials are involved and PR+l is a constant. Since Pn+1 
cannot be decreased, it follows that Pa cannot be decreased; hence Pa1 cannot be 
decreased, and finally it is seen that P1 cannot be decreased. Hence xl is a global 
minimum. 

On the other hand, if, at x xi, Pi(x) was a local (but not a global) minimum, 
then since all Pk's, k = 2, 3 * * , n, could have at most a finite number of minima, 
it follows that the process described would yield a point t (inducing a lower value 
of PF) in a finite number of steps. Clearly, the process terminates in a global minimum 
for P,(x). 

As a simple example, consider the function 

Fl(x) = x- 15x4 + 27X2 + 250 

with minima (0, 250), (? 3, 7). If one finds xl = 0 as a local minimizer, then Fl(x) is 
written 

Fl(x) = 250 + x2(x4 - 15X2 + 27) 

and the minima of F2(0, x) are both negative. The algorithm would then yield one 
of the other minima of Fi(x). If one finds xi = 3 as a local minimizer of F1(x), then 
F1(x) is written 

F1(x) = 7 + (x - 3)2{x4 +6x3 + 12x2 + 18x + 27} 

The only minimum of F2(3, x) is at x = -3, and F2(3, -3) = 0. Thus 

F1(x) 7 + (x - 3)2{0 + (x + 3)2(3 + x2)}. 

It is now seen that F3(3, -3, x) has its only minimum at x = 0. Since this minimum 
is positive and since F4(3, -3, 0, x) is a constant, it follows that F1(x) cannot be 
decreased further. 

If one had started with xl =-3, the results would have been essentially the same. 
The final decomposition of F1(x) would have been 

F1(x) = 7 + (x + 3)2{0 + (x - 3)2(3 + x2)}. 

We consider now an analogous process for the case of analytic functions of 
several variables. Conditions for the success of this algorithm are unknown to us. 
However, we include some examples of the application of the process. 
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Given an analytic function F1 of n variables with local minimum at xi, let HI(x,) 
be the Hessian of FI(x) at xl. Assume H1(x,) is nonsingular. We define F,(x1, x) by 
the equation: 

F1(x) = F1(x1) + [(x - x1), HI(xl)(x - x1)] F2(X1, x), 2! 

where [., *] is the inner product in En. If it is possible to find a value of t such that 
F2(x,, t) < 0. this value of x will be a good starting value for finding a lower minimum 
of F1. The new problem is then to minimize F2(x,, x). If the process continues, we 
may write: 

Fk-1 (X1l, X2 ,** Xk-2 s X) 

(l ) - ~~Fk-1(X1 ' * * , Xk-2 s Xk-1) 

+ [X - Xk-1), Hk1(X1, s Xk-l)(X - Xk..1)] Fk(Xl * Xk-1, X). 
2! 

We conjecture that if the function F, is analytic, and if the functions F1, F2, F, 
etc., have a finite number of stationary points all of which lie in a bounded set, then 
we can find a point lower than any given purely local minimum in a finite number of 
steps. On the other hand, starting at a global minimum x the algorithm will generally 
not terminate, except for the case of a polynomial in one variable. On the other hand, 
if some auxiliary function Fk is nonnegative everywhere, then x is a global minimum. 

The elements of the Hessian matrix Hk may be calculated by use of the gradients 
and Hessians of Fk., By differentiation of the above formula, one can obtain the 
result 

VFk(xl, * . , Xk-1, X) 

2{VFk..(X1, . Xk-2, X) - Fk(X,. , Xk-1, X)Hkl(Xl, Xk-.)(X . 

[(X - Xk-1), Hk-,(X*, Xk-1)(X, 
- Xk-)] 

Differentiation of Eq. (1) a second time leads to the result 

Hk(xl, * * * , Xk-1, X) 

21 Hkl(Xl, ***,Xk-2, X) 7Fk(Xl, I Xk-l1,x I~ Hk-l(Xl, Xk-1)(X Xk-Il) }' 

[(X - Xk-1), Hkl(Xl, * * * , Xk-1)(X Xk-0)] 

_2f Hk1(xl, , X 1 )(x - Xk.1){7Fk(XI, , Xk1, X) 

[(X - Xk-1), Hk-l(xl, * * * Xk--)(X Xk-l)] 

2Fk(xl, * , Xk-1 , X)Hk-l(Xl, * * * , Xk-1) 

[(X - Xk-1), Hk-.(Xl, * * . , Xk--)(X Xk-l)] 

In particular, since Xk is defined as a minimum of Fk(x,, * **, xk,, x), it follows that 

Hk~x, . x) =2{ 
Hk_(xI, 

. , Xk-2, Xk)- Fk(Xl, * * 
, xk)Hkl(Xl, ,Xk- 

[(X - Xk-.), Hk-l(Xl, * Xk-)(X . Xk-l) 

We have tried the process on several test problems. As a practical limit, our 
computer routines were such that they stopped rather than consider F1; this, of 
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course, restricts the success of the process. The basic local minimization algorithm 
used was that of the reference. 

First, we consider an 8th degree polynomial in two variables, namely: 

F1 I {1 + (x + y + 1)2(19 - 14x + 3X2 _ 14y + 6xy + 3y2)I 

*{30 + (2x - 3y)2(18 - 32x + 12X2 + 48y - 36xy + 27y2)j 

which has the local minimum points (1.2, 0.8, 840), (1.8, 0.2, 84), (-0.6, -0.4, 30), 
and (0, - l, 3). When the starting value was chosen near the second named minimum, 
the process gave the following minima for the functions as defined in the algorithm: 

F1 = 84.00000 at (1.80000, 0.20000) 

F2 = 0.07407 at (1.13333, 0.86667) 

F3 = -0.18729 at (-0.44558, -0.20925) 

F2 = -0.18519 at (0.20000, -0.86667) 

F1 = 3.00000 at (0.00000, - 1.00000) (Global minimum) 

F2 = 0.07407 at (2.00000, 0.33333) 

F3 = 0.05334 at (1.27987, 0.98687). 

Our local minimization routine then failed to find a true minimum for F4, and thus 
the program concluded that the point (0, -1, 3) was possibly a global minimum. 
Near the line x + y + 1 = 0, F4 and the components of VF4 approach zero as x and 
y approach infinity, and the minimization algorithm headed out along this trough. 
Ordinarily, one might expect to have to go to F, before finding such behavior at c 
because F1 is of 8th degree. However, along the line x + y + 1 = 0 (or along the line 
2x -3y = 0), F1 is only of 4th degree. 

When a starting value was chosen near the largest local minimum of F1, the 
process gave the following minima for the functions defined by the algorithm: 

F1 = 840.00000 at (1.20000, 0.80000) 

F2 = -0.18519 at (-0.40000, -0.26667) 

F1 = 30.00000 at (-0.60000, -0.40000) 

F2 = 0.07407 at (1.40000, 0.93333) 

F3 = -0.18611 at (1.92089, 0.39312) 

F2 = 0.00503 at (1.94567, 0.29703) 

F3 = 0.07440 at (1.33389, 1.00067). 

Our local minimization routine again failed to find a true minimum for F4. When it 
stopped looking, it had been going very slowly out towards infinity along a trough 
near the line 2x - 3y = 0. 

Consider now the function of two variables 

F1 = e, + sin4(4x - 3y) + 2(2x + y - 10)2 
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where 

U = J(X2 + 92 - 25). 

This function has many local minima. Its global minimum of 1 is attained at the 
point (3, 4). 

With a starting guess of (4.3, 2.5), the process gave the following minima for the 
functions as defined in the algorithm: 

F. = 1.59610 at (4.23366, 2.57739) 

F2 = 0.31912 at (4.28207, 2.49359) 

F3 = -0.01400 at (4.52803, 2.02104) 

F2 = 0.00 15 at (4.59177, 1.85735) 

F3 = -0.03217 at (4.79969, 1.26915) 

F2 = -0.01801 at (4.83117, 1.14328) 

F1 = 1.35089 at (4.83509, 1.10764) 

F2 = 0.95340 at (4.89062, 1.16513) 

F3 = -0.17817 at (4.96210, 0.64176) 

F2 = -0.08634 at (4.96255, 0.44300) 

F1 = 1.03481 at (4.97860, 0.26959) 

F2 = 0.38552 at (4.96093, 0.41790) 

F3 = -0.02164 at (4.85379, 1.04191) 

F2 = 0.07052 at (4.79111, 1.25705) 

F3 = -0.00950 at (3.99411, 2.98862) 

F2 = 0.00417 at (3.84188, 3.14352) 

F3 = 0.97058 at (3.86674, 3.19619) 

F4 = -0.13176 at (3.65358, 3.44897) 

F3 = -0.07390 at (3.52206, 3.51881) 

F2 = 0.00064 at (3.42575, 3.61546) 

F3 = -0.03809 at (3.04941, 3.96126) 

F2 = -0.00017 at (3.01190, 3.99057) 

F1 = 1.00000 at (3.00000, 4.00000) (Global minimum) 

F2 = 0.99895 at (2.99059, 3.99678) 

F3 = 0.40716 at (3.00446, 4.13102) 

F4 = -4.37602 at (3.00048, 3.99221) 

F3 = -0.02424 at (2.99984, 3.99096) 
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F2 = 0.99884 at (2.99981, 3.99024) 

F3 = 0.29377 at (3.14976, 4.04084) 

F4 = -0.39210 at (2.63994, 3.99252) 

F3 = -.00500 at (1.92550, 4.52410). 

At this point, our program suggested that (3, 4, 1) might be a global minimum because 
the local minimization routine failed to find a local minimum for F2. 

When one looks at the minima of the various auxiliary functions as the algorithm 
proceeds, it is noted that in many cases the process could have been speeded up by 
making the following change in the algorithm: Whenever a local minimum point is 
found for any function, the coordinates of x are saved in a list. Then, when one 
wishes to find a local minimum of Fk, a starting value for x is chosen so that Fk has 
its smallest value obtainable for any point in the list. We have not tried this modified 
algorithm on any test problems. If difficulty occurs because of stationary points at 
infinity, the addition of a penalty function would be a possibility. For example, if the 
domain under consideration is a sphere of radius p with center x0, we could add the 
function [lIx - xol| I2/p2], to F1, where q is a large integer. For large q, the minima of 
the sum function will be close to the minima of F1, and the stationary points of F, 
when k is not too large will lie in the sphere. 
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